首页 >> 网络营销词典 >> 互联网基础知识FAQ >> 大数据处理架构

大数据处理架构[编辑]


概述
大数据解决方案的逻辑层可以帮助定义和分类各个必要的组件,大数据解决方案需要使用这些组件来满足给定业务案例的功能性和非功能性需求。

大数据解决方案的逻辑层

    逻辑层提供了一种组织您的组件的方式。这些层提供了一种方法来组织执行特定功能的组件。这些层只是逻辑层;这并不意味着支持每层的功能在独立的机器或独立的进程上运行。大数据解决方案通常由以下逻辑层组成:

  1. 大数据来源
  2. 数据改动 (massaging) 和存储层
  3. 分析层
  4. 使用层

大数据来源

    考虑来自所有渠道的,所有可用于分析的数据。要求组织中的数据科学家阐明执行您需要的分析类型所需的数据。数据的格式和起源各不相同:

    格式— 结构化、半结构化或非结构化。

    速度和数据量— 数据到达的速度和传送它的速率因数据源不同而不同。

    收集点— 收集数据的位置,直接或通过数据提供程序,实时或以批量模式收集数据。数据可能来自某个主要来源,比如天气条件,也有可能来自一个辅助来源,比如媒体赞助的天气频道。

    数据源的位置— 数据源可能位于企业内或外部。识别您具有有限访问权的数据,因为对数据的访问会影响可用于分析的数据范围。

    数据改动和存储层:此层负责从数据源获取数据,并在必要时,将它转换为适合数据分析方式的格式。例如,可能需要转换一幅图,才能将它存储在 Hadoop Distributed File System (HDFS) 存储或关系数据库管理系统 (RDBMS) 仓库中,以供进一步处理。合规性制度和治理策略要求为不同的数据类型提供合适的存储。

    分析层:分析层读取数据改动和存储层整理 (digest) 的数据。在某些情况下,分析层直接从数据源访问数据。设计分析层需要认真地进行事先筹划和规划。必须制定如何管理以下任务的决策:

    使用层:此层使用了分析层所提供的输出。使用者可以是可视化应用程序、人类、业务流程或服务。可视化分析层的结果可能具有挑战。有时,看看类似市场中的竞争对手是如何做的会有所帮助。

大数据环境下的数据处理需求

     大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性。

传统数据处理方法的不足

    传统的数据采集来源单一,且存储、管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理。对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性。

    传统的数据处理方法是以处理器为中心,而大数据环境下,需要采取以数据为中心的模式,减少数据移动带来的开销。因此,传统的数据处理方法,已经不能适应大数据的需求!

 

参考资料:
扩展阅读:
相关词条:
合作编辑:

网络营销词典内容均由网友提供,仅供参考。如发现词条内容有问题,请发邮件至info # wm23.com。

词条信息

浏览次数:3

编辑次数:0历史版本

创建者: 林雪婷

最近更新:2015/11/9 10:06:03

词条分类导航

关于网络营销教学网站| 本站动态| 网站地图| 版权声明| 联系作者| 问题和建议|

版权声明:网络营销教学网站所有作品版权均归原作者所有,未经书面许可,严禁任何形式的转载/转贴、出版、篡改、汇编、编译等。