基带传输[编辑]
一种不搬移基带信号频谱的传输方式。未对载波调制的待传信号称为基带信号,它所占的频带称为基带,基带的高限频率与低限频率之比通常远大于1。
数字信号
模拟信号经过信源编码得到的信号为数字基带信号,将这种信号经过码型变 常见的基带传输,不经过调制,直接送到信道传输,称为数字信号的基带传输。
基带传输系统组成
基带传输系统的组成框图。它主要由码波形变换器、发送滤波器、 基带传输波形信道、接收滤波器和取样判决器等5个功能电路组成。
基带传输系统的输入信号是由终端设备编码器产生的脉冲序列,为了使这种脉冲序列适合于信道的传输,一般要经过码型变换器,码型变换器把二进制脉冲序列变为双极性码(AMI码或HDB3码),有时还要进行波形变换,使信号在基带传输系统内减小码间干扰。当信号经过信道时,由于信道特性不理想及噪声的干扰,使信号受到干扰而变形。在接收端为了减小噪声的影响,首先使信号进入接收滤波器,然后再经过均衡器,校正由于信道特性(包括接收滤波器在内)不理想而产生的波形失真或码间串扰。最后在取样定时脉冲到来时,进行判决以恢复基带数字码脉冲。
码型要求
1、有利于提高系统的频带利用率
2、基带信号应不含直流分量
同时低频分量要尽量少,因为由于变压器的接入,使信道具有低频截止特性。
3、考虑到码型频谱中高频分量的影响
电缆中线对间由于电磁辐射而引起的串话随频率升高而加剧,会限制信号的传输距离或传输容量。
4、基带信号应具有足够大的定时信号供提取
5、基带信号的传输码型应具有误码检测能力
6、码型变换设备简单,容易实现
传输码型
传输码型举例
常见的传输码型有NRZ码、RZ码、AMI码、HDB3码及CMI码,其中最适合基带传输的码型是HDB3码。另外,AMI码也是CCITT建议采用的基带传输码型,但其缺点是当长连"0"过多时对定时信号提取不利。CMI码一般作为四次群的接口码型。
基本准则
奈奎斯特第一准则
如何才能保证信号在传输时不出现或少出现码间干扰,这是关系到信号可靠传输的一个关键问题。奈奎斯特对此进行了研究,提出了不出现码间干扰的条件:当码元间隔T的数字信号在某一理想低通信道中传输时,若信号的传输速率位Rb=2fc(fc为理想低通截止频率),各码元的间隔T=1/2fc,则此时在码元响应的最大值处将不产生码间干扰,且信道的频带利用率达到极限,为2(b/s)·Hz。上述条件是传输数字信号的一个重要准则,通常称为奈奎斯特第一准则。即传输数字信号所要求的信道带宽应是该信号传输速率的一半
BW=fc=Rb/2=1/2T
当满足这一条件时,其它码元的拖尾振幅在对应于某一码元响应的最大值处刚好为零。滚降低通幅频特性
实际传输中,不可能有绝对理想的基带传输系统,这样一来,不得不降低频带利用率,采用具有奇对称滚降特性的低通滤波器作为传输网络。
根据推导得出结论:只要滚降低通的幅频特性以点C(fc,1/2)呈奇对称滚降,则可满足无码间干扰的条件(此时仍需满足传输速率=2fc)。
滚降系数:
a=[(fc+fa)-fc]/fc
用滚降低通作为传输网络时,实际占用的频带展宽了,则传输效率有所下降,当a=100%时,传输效率即频带利用率只有1(b/s)·Hz,比理想低通小了一半。眼图
眼图能直观地表明数字信号传输系统出现码间干扰和噪声的影响,能评价一个基带系统的性能优劣。
中继传输
再生中继传输
基带数字信号在传输过程中,由于信道本身的特性及噪声干扰使得数字信号波形产生失真。为了消除这种波形失真,每隔一定的距离加一再生中继器,由此构成再生中继系统。再生中继系统的特点是无噪声积累,但有误码率的累积。
再生中继器由三大部分组成:均衡放大、时钟提取和判决再生。再生中继器
再生中继器主要由均衡放大电路、定时提取电路、判决及码形成电路等3个部分组成。均衡放大电路的作用是对接收到的失真波形进行放大和均衡;定时提取电路的作用是在收到的信码流中提取定时时钟,以得到与发端相同的主时钟脉冲,做到收发同步;判决及码形成电路则是对已被放大和均衡的信号波形进行抽样、判决,并根据判决结果形成新的、与发送端相同的脉冲。
网络营销词典内容均由网友提供,仅供参考。如发现词条内容有问题,请发邮件至info # wm23.com。